1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
pub(crate) mod mesh_builder;
use cgmath::Matrix4;
use ndarray::Array1;
use num::ToPrimitive;
use crate::{
simulation::drawable::binder::{Binder, Bindable, Drawable},
Error,
};
use mesh_builder::MeshBuilder;
#[allow(dead_code)]
#[derive(Debug)]
pub(crate) struct Mesh {
pub(crate) max_length: f64,
pub(crate) model_matrix: Matrix4<f32>,
pub(crate) boundary_indices: Option<Vec<u32>>,
binder: Binder,
pub(crate) indices: Array1<u32>,
pub(crate) vertices: Array1<f64>,
}
impl Mesh {
pub fn get_model_matrix(&self) -> &Matrix4<f32> {
&self.model_matrix
}
pub fn builder<B>(location: B) -> MeshBuilder
where
B: AsRef<str>,
{
MeshBuilder::new(location)
}
pub(crate) fn filter_for_solving_1d(&self) -> Array1<f64> {
let vertices_len = self.vertices.len() / 12;
self.vertices
.iter()
.enumerate()
.filter_map(|(idx, x)| {
if idx % 6 == 0 && idx < vertices_len * 6 {
Some(*x)
} else {
None
}
})
.collect()
}
pub(crate) fn update_gradient_1d(&mut self, velocity_norm: Vec<f64>) {
let sol_max = velocity_norm
.iter()
.copied()
.fold(f64::NEG_INFINITY, f64::max);
let sol_min = velocity_norm.iter().copied().fold(f64::INFINITY, f64::min);
let vertices_len = self.vertices.len();
for i in 0..(vertices_len / 12) {
let norm_sol =
(velocity_norm[i] - sol_min) / (sol_max - sol_min) * (std::f64::consts::PI / 2.);
self.vertices[6 * i + 3] = norm_sol.sin();
self.vertices[6 * i + 5] = norm_sol.cos();
self.vertices[6 * i + 3 + vertices_len / 2] = norm_sol.sin();
self.vertices[6 * i + 5 + vertices_len / 2] = norm_sol.cos();
}
}
}
impl Bindable for Mesh {
fn get_binder(&self) -> Result<&Binder, Error> {
Ok(&self.binder)
}
fn get_mut_binder(&mut self) -> Result<&mut Binder, Error> {
Ok(&mut self.binder)
}
}
impl Drawable for Mesh {
fn get_indices(&self) -> Result<&Array1<u32>, Error> {
Ok(&self.indices)
}
fn get_vertices(&self) -> Result<Array1<f32>, Error> {
Ok(Array1::from_vec(
self.vertices.iter().map(|x| -> Result<f32,Error> { x.to_f32().ok_or(Error::FloatConversion) })
.collect::<Result<Vec<f32>,_>>()?
))
}
fn get_max_length(&self) -> Result<f32, Error> {
let max_len = self.max_length.to_f32();
match max_len {
Some(f) => {
if f.is_finite() {
Ok(f)
} else {
Err(Error::Overflow)
}
}
None => Err(Error::Unimplemented),
}
}
}
#[cfg(test)]
mod test {
use super::Mesh;
use ndarray::Array1;
#[test]
fn parse_coordinates() {
let new_mesh = Mesh::builder("/home/Arthur/Tesis/Dzahui/assets/test.obj")
.build_mesh_3d()
.unwrap();
assert!(
new_mesh.vertices
== Array1::from_vec(vec![
-1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0,
0.0, 0.0, 1.0
])
);
assert!(new_mesh.indices == Array1::from_vec(vec![0, 1, 2]));
}
#[test]
fn is_max_distance() {
let new_mesh = Mesh::builder("/home/Arthur/Tesis/Dzahui/assets/test.obj")
.build_mesh_2d()
.unwrap();
assert!(new_mesh.max_length >= 1.90);
assert!(new_mesh.max_length <= 2.10);
}
}